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Prediction of Airplane States

Amnon Katz* and Kenneth Grahamt
University of Alabama, Tuscaloosa, Alabama 35487-0280

Methods for extrapolation of airplane flight trajectory and orientation history that exploit coordinated flight
and other airplane specific grounds are derived and applied. They include extraction of orientation from
trajectory with angle-of-attack (AOA) correction, closed-form trajectory extrapolation based on constant lon-
gitudinal and transverse acceleration, and a ‘‘phugoid scheme’’ for six degrees-of-freedom extrapolation at
constant AOA in coordinated flight. A metric well known in connection with networked simulation shows an
advantage of up to a factor of 3 for the new methods.

I. Introduction

HE state of a rigid body in three-space involves six de-

grees of freedom (DOF). The motion history of such
body is defined by six arbitrary functions. Current extrapo-
lation schemes are based on the assumption that these six
functions are smooth. Airplane dynamics admits only four
arbitrary functions, and for most practical purposes only three.
We exploit this knowledge for improved prediction for air-
planes.

This work originated in the context of distributed interac-
tive simulation (DIS) and the DIS standard.’ The standard
exploits the extrapolation of the motion of simulated entities
to reduce data transmissions over the network. An update is
broadcast only when the extrapolation breaks a preselected
tolerance. In this way, a natural metric for the fidelity of the
extrapolation arises: the frequency of required updates be-
comes the measure of fidelity. The better the prediction of
future motion, the less frequent the updates.

We compare the new methods, in terms of frequency of
required updates, to second-order prediction of position and
first-order prediction of orientation (based on constant an-
gular velocity).” We also compare our results to the use of
perfect position or of perfect orientation. Our methods pro-
vide an improvement by a factor of 2 to 3 over the generic
comparison method. Extracted orientation often rates close
to perfect orientation.

II. Overview

Extrapolation in time is prediction. Naturally, it is impos-
sible to predict what a pilot will do. But a pilot does not
control six arbitrary functions, he (the word “he” in all its
forms is used here generically to mean he, she, or it) controls
only four in the form of his inputs to the throttle, elevator,
ailerons, and rudder. If the added assumption is made that
coordinated flight be maintained, then only three DOF re-
main. Coordinated flight will be assumed from here on.

Three arbitrary functions are exactly what is required to
define a space—time trajectory. (A space—time trajectory is
the combination of a curve in space and a schedule of the
times at which the airplane is at any given point.) An airplane
can (subject to some performance limitations) fly an arbi-
trarily specified smooth space—time trajectory; but its ori-
entation while doing so is totally determined.

Received Feb. 14, 1994; revision received Oct. 1, 1994; accepted
for publication Oct. 11, 1994. Copyright © 1994 by the American
Institute of Aeronautics and Astronautics, Inc. All rights reserved.

*Professor, Department of Aerospace Engineering, P.O. Box
870280. Member AIAA.

+Graduate Student, Department of Aerospace Engineering, P.O.
Box 870280. Student Member ATAA.

563

To visualize this, imagine the space trajectory being a circle
in the horizontal plane and the time schedule specifying that
the circle be followed at a given constant rate of speed. The
pilot can accomplish this. The load factor and bank are de-
termined by a universal relationship to rate and radius of turn.
The pitch attitude is slaved to the angle of attack (AOA) that
produces the requisite load at the given speed. The yaw input
is, of course, slaved to the requirement of coordinated flight.

Orientation is defined by the space—time trajectory. The
precise determination of pitch requires detailed knowledge of
geometric and aerodynamic data of the particular airplane.
On the other hand, the orientation of a system of “wind
coordinates” aligned with the relative wind (“wind orienta-
tion”) for the case of coordinated flight can be extracted from
the trajectory by a universal algorithm that requires no data
specific to the airplane type. This algorithm was given by one
of us (AK) in a position paper to the sixth DIS workshop.?
(The suggestion that some aircraft characteristics might be
exploited in the extrapolation scheme has been voiced oc-
casionally. The use of coordinated flight was mentioned at
the 4th DIS workshop, but the algorithm for doing this was
not given until the 6th workshop.)

The closed-form extraction algorithm obviates the necessity
to extrapolate orientation variables. The difference between
wind orientation and body orientation, for coordinated flight,
is the AOA (Fig. 1). The AOA can be determined from the
initial data and, if assumed constant, can subsequently be used
to “correct” velocity orientation to body orientation. This is
“extraction with correction” or EC, which we proposed for
the first time in Ref. 4. We found the angle-of-attack correc-
tion crucial for the data we analyzed.

Extraction of the orientation can be applied together with
any method for predicting the trajectory. We present results
where it is used in conjunction with the assumption of constant
Earth acceleration (CEA) in Sec. VIII.

While CEA is a useful common approach to extrapolating
trajectory, it has long been felt that constant body accelera-
tions are a better assumption where airplanes are concerned.
We offer a variant of this concept in which the components
of acceleration are constant in a velocity frame—a frame
aligned with the velocity and the transverse acceleration. The
result is a universal plane motion that admits closed-form
expressions.* We refer to it as “constant longitudinal and
transverse acceleration,” or, in brief, CLTA. Extraction of
orientation and CLTA are two independent algorithms. The
former can be used with any method of trajectory extrapo-
lation. The latter can be used with any method of orientation
extrapolation. Put together as CLTA + EC, they make a
complete closed-form extrapolation algorithm for airplanes.

CLTA may describe airplane flight better than CEA. This
scheme will provide correct long-range predictions in a level
turn. However, any pull-up or pushover would be continued
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Fig. 1 Body and wind coordinates.

into an inside or an outside loop. This is avoided by our third
algorithm-—phugoid extrapolation.? The phugoid scheme of-
fers a complete six degree-of-freedom extrapolation, with sim-
plified airplane dynamics and coordinated flight built in. Left
to its own devices, phugoid extrapolation will stabilize any
mild transient condition into a stable level, climbing, or de-
scending turn, or into a straight climb or descent, if initially
unbanked.

The phugoid scheme assumes constant thrust, constant an-
gle of attack, and coordinated flight. There are two modes of
lateral control: 1) constant bank and 2) zero rate of roll. The
first is appropriate for normal attitudes and maneuvers, the
second to aerobatic flight. One mode or the other is selected
based on attitude. The phugoid scheme, too, is based on the
wind reference system, which can be propagated using uni-
versal relationships and requires a minimum of vehicle specific
data. An AOA correction as described above is built in. The
premise of constant AOA justifies using the AOA determined
initially throughout the phugoid prediction.

The phugoid scheme is unable to predict what a pilot will
do. It does predict what the airplane will do without conscious
input from the pilot. Constant AOA roughly translates to
heavy damping on any short period oscillation. Constant thrust
roughly translates to constant throttle input. Constant bank
and zero roll do require control inputs; however, these inputs
are “psychomotor” as far as the pilot is concerned. Phugoid
extrapolation requires an estimate of the aerodynamic effi-
ciency (L/D ratio). It is not, however, overly sensitive to the
estimate. Recall that L/D affects only the damping of phugoid
oscillations and not their frequency.

Section IIT addresses trajectory geometry and kinematics.
The scheme for extracting orientation from a given space—
time trajectory is given in Sec. IV. Section V presents the
closed-form expressions for trajectories maintaining constant
longitudinal and transverse acceleration (CLTA). The phu-
goid scheme is defined in Sec. VI. Section VII describes ex-
ceptions to the various algorithms, which arise in special cases,
and the work-arounds that we recommend. Section VIII pre-
sents the results of applying the airplane specific methods to
sample data.

III. Trajectory Geometry and Kinematics

A space—time trajectory is a sequence of positions in three-
space parameterized by time ¢. Geometrically, the space tra-
jectory consists of the same sequence of positions, however
parameterized. The natural geometric parameter is the arc
length s. We denote derivatives with respect to s by a prime
and derivatives with respect to ¢ by a dot.

The basic geometric relationships are

r =e, ¢))

r'=e = ke, (2)

Here, e,, is the unit vector along the first normal to the curve,
and « is the curvature, which is also the inverse of the local
radius of the trajectory. A small segment of the trajectory
can be approximated by a circular arc of radius 1/« lying in
the plane defined by e, and e,. The second normal to the
trajectory, which completes e, and e, to a right-handed triad
is

e =e X e, 3)

Moving from geometry to kinematics, we now turn to the
velocity v, which is the time derivative of r, and the accel-
eration a, which is the second time derivative. In evaluating
these we use Eqs. (1-3) and the chain rule of derivatives with

§=v @)

We find
v=F = ve, (5
a=v = ve, + kv, (6)

Thus, the velocity has the magnitude § and the direction of
e¢,. The acceleration consists of a longitudinal component of
magnitude v in the direction of e,, and a normal component
(the centripetal acceleration) in the direction of the first nor-
male,.

Equations (5) and (6) may serve to define the longitudinal
and normal acceleration, given the trajectory. In the alter-
native, when velocity and acceleration are given, the tangen-
tial direction is given by

e, = vlv (7)

The acceleration may be decomposed into a tangential com-
ponent

a, = (a-e,)e, (8)
and a normal component

a,=a — a, 9)
which is in the direction of the first normal.

IV. Extraction of Orientation from the Trajectory

We now get to the algorithm for extracting the airplane
orientation from the trajectory. The orientation amounts to
a definition of the body-fixed coordinate system in terms of
an Earth-fixed system. To be definite, we adopt a body system
with the x, axis pointing forward towards the nose, the y, axis
pointing to the pilot’s right towards the right wingtip, and the
z,, axis directed down through the airplane’s floor.

The extraction procedure actually addresses a different sys-
tem of axes, known as “wind axis system.” In this system,
the x,. axis is aligned with the airplane’s velocity vector. The
body system is related to the wind system by a rotation in
pitch equal to the airplane’s AOA and a rotation in yaw equal
to the sideslip angle. This last angle vanishes in coordinated
flight. Assuming this, the y, axis coincides with the y, axis.
The z,, axis completes the right-hand triad. The AOA can be
determined from the initial data as the angle between x, and
v. A correction by the AOA may be applied to the extracted
wind orientation to estimate the true body orientation.

Denote the unit vectors in the x,, y,., and z, directions,
respectively, by i, j.., and k. We start by aligning the x,, axis
with the trajectory

= e, (10)
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With this done, there still remains one degree of orientation
freedom, namely, the rotation of the wind system around e,.
This is done in the transverse plane, that is the plane or-
thogonal to e,. The acceleration a has already been decom-
posed into tangential and normal components in Egs. (8) and
(9). We similarly decompose the acceleration of gravity g into
a longitudinal component

g = (g-e)e, an

and a normal component

g. =8 & (12)

The balance of normal specitic forces is expressed by

l=a,-g, (13)

where I is the active normal specific force; in airplane terms
this is the lift divided by the mass. The vectors on the right
side of Eq. (13) are defined in Egs. (9) and (12). Equation
(13) in turn determines I.

The condition of coordinated flight is that [ be in the di-
rection of the negative z,, axis:

k, = — (D (14)
The body triad is completed by
Jo =k, X i, (15)

When the vectors i, j,, k,, are expressed in an Earth coor-
dinate system X, Y, Z, the matrix of components

b e K
Mw = le ]'wY ka (16)
lvz Jwz Kuz

describes the active rotation from Earth to wind coordinates.

If the AOA correction is to be employed, the correction
may be computed once from the initial data and applied every
time the orientation is used for visual presentation. For il-
lustration, assume that orientation is expressed as a rotation
matrix M (the active rotation from Earth coordinates). From
the initial body orientation M, and the initial M, of Eq. (16),
compute the correction matrix:

M. = MM, 17)

Then, once the extrapolated M,, is obtained, M, may be pro-
duced as

M, = M .M, (18)

An analogous procedure applies to quaternions. Euler angles
may be converted to one or the other.

V. Trajectory Extrapolation

There still remains the question of extrapolating the tra-
jectory. In this section this is addressed based on the as-
sumption of components of acceleration being constant in
velocity coordinates. Closed-form results are derived.

It is common practice to extrapolate based on a constant
value of Earth acceleration. This amounts to fitting a parabola
in the plane of e, and e, to represent the trajectory. There
aren’t many flight maneuvers that maintain constant (non-
zero) Earth acceleration. Keeping the body components of
acceleration constant may have a slightly wider applicability.
Use of actual body orientation requires knowledge of details
of the configuration of the particular airplane. But use of a
velocity frame aligned withe,, e,,, and e, of Eqs. (1-3) supports
universal relationships.

Assuming that the tangential and normal components of
acceleration in Eq. (6) are both constants, which we denote
A and B respectively, we find
v=A (19)
kv = B (20)

Equation (19) integrates into
v =y, + At 21

We further suppose that the motion stays in the plane de-
fined by the initial e, and e,. Multiply Eq. (2) by s = v to
find

é, = vke, (22)

This identifies the angular velocity of e, and e,, in their plane
as

6 = vk (23)
where @ is the angle of e, with an Earth-fixed x, axis in the
plane of the motion. Now use Eqgs. (20) and (21) to recast
Eq. (23) as

0 = Biv = B/(v, + At) (24)

The last equation integrates into

0 = (BlIA).

1+ (Athv)| = (BIA)uvivy|  (25)

To complete the integration of the trajectory we must de-
termine the position of the airplane. We do this first in a
system of coordinates x,, y, in the plane of the motion with
the x, axis along the initial e, and the y, axis along the initial
e, (see Fig. 2). The governing differential equations are

X, = vcos (26)

Y, = vsin @ 27

To proceed from here, divide the last two equations by Eq.
(24) to obtain

d_x 2
FBE = VE cos 6 (28)
d 2
dle" - %sm o (29)

Now rearrange Eq. (25) as
V= Hyyelarsw (30)

and substitute into Eqs. (28) and (29). The result is

dxp v;l) 2

—£ _ X (A/B)8 31
a0 B¢ cos 6 (31)
dy, _vi , .

22 20 L,2a/Bye

w - B¢ sin 6 32)

The last two equations are reduced by quadrature to

— Vo 2(A/B)Y® i
N yraarti (2A cos § + Bsin 6)  (33)
2
Y, = —zv(,___ e*VB¥(2A sin 6 — Bceos 6)  (34)
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Fig. 2 CLTA plane.

Equations (33) and (34) describe a family of curves that de-
pend on only two parameters, which may be selected as

a = A/B (35
¢ = Bv}/(4A* + B?) (36)
In terms of these, Egs. (33) and (34) can be rewritten as
x, = ce**(2a cos 6 + sin 6) 37
y, = ce*(2c sin § — cos 0) (38)

where ¢ has a dimension of length and serves as a scale factor
for the trajectory. a is dimensionless and determines its shape.
Each trajectory is a spiral that converges to the origin on one
side and spreads out to infinity on the other. Figure 3, a plot
of y,/c against x,/c, is a sample curve for @ = 0.125.

Each spiral is self-similar, and any two points on the spiral
are equivalent in the following sense: any selected point on
the spiral may be moved to any other selected point by a
similarity transformation, consisting of rotation and dilation,
that maps the spiral onto itself.

The velocity vector v and the position vector r relative to
the Earth system origin are given by

v = v(cos 0 e, + sin Be,,) 39)
r=r,+ (x, — 2ac)e, + (y, + cle, (40)

where e,, and e, are the unit vectors in the initial tangential
and normal directions, respectively. The full closed form pro-
cedure is as follows:

1) Determine the initial parameters e, e,,,, v,, 6,, A, and
B from the initial data.

2) Compute ¢ and « [Eqs. (35) and (36)].

3) Compute v in terms of ¢ [Eq. (21)].

4) Calculate 6 in terms of v [Eq. (25)].

5) Find x,,, y, in terms of 6 [Eqs. (37) and (38)].

6) Obtain v and r [Egs. (39) and (40)].

The derivations above assume that A # 0 and B # 0.
Should B vanish, then, from Eq. (24) 6 is a constant, the
velocity frame does not rotate, and its motion is rectilinear.
The equations for constant acceleration in Earth coordinates
apply. (The case that both A and B vanish is included.) If
A = 0, but B # 0, the trajectory is a circle in the plane
containing the velocity vector and the acceleration vector. The
speed and the angular velocity of e, and e, in their plane
remain constant. The angle 6 becomes

0 = (B/v)t (41)

Equations (33) and (34) reduce to
x, = (v*/B)sin § (42)
v, = —(vi/B)cos 0 (43)

which describe a circle with its center atx, = 0,y, = 0.

y/c

1 S TUUUR DUUUE U SO
40 8 6 4 2 0 2 4 6 8 10
x/c

Fig. 3 CLTA trajectory.

The breaking of the initial acceleration into a tangential
component A and a normal component B is ill-defined when
the velocity vanishes. However, the velocity that immediately
builds up is in the direction of the acceleration. For this reason
we interpret all the acceleration in this case as being tangential

A=a B =20 (44)
A more rigorous explanation of this point is as follows: De-
compose the acceleration at a slightly later time 8¢ into lon-
gitudinal and transverse components, and take the limit 8t —
0. By a well-known theorem of calculus about the limit of a
quotient with both numerator and denominator vanishing:

lim A = lim(a-v)/v = lim(a-a)la = a (45)

Similarly

lim B = limVa® — A2 = 0 (46)

VI. Phugoid Extrapolation Scheme

Both of the schemes of the previous section ignore some
of the facts of life of ordinary flying: That the acceleration of
gravity g is significant compared to specific forces created by
an airplane; that a tangential component of g will cause sig-
nificant changes in speed; that speed is a necessary ingredient
in generating normal loads. All of these observations are re-
flected in the phugoid extrapolation scheme introduced in this
section.

We assume that the four DOF at the disposal of the pilot
are used to maintain 1) constant angle of attack, 2) constant
thrust, 3) constant bank (mode a) or zero rate of roll (mode
b), and 4) coordinated flight (zero sideslip angle).

Assumption 1 translates into both lift and drag being pro-
portional to v? with constant coefficients. Using the decom-
position of @ and g into tangential and normal components
[Egs. (8), (9), and (11-13)] we postulate

I = —kPv? (47)
a - g =0~ R (48)

where P, O, R are constant. Note that P is positive by the
definition of k [Eq. (14)]; R is positive because of the nature
of drag; Q is positive so long as the thrust is in the direction
of flight.

The bank of the wind frame is the angle between the k,
axis and g,,. This angle is determined from the initial / and g,
and, in mode a, maintained constant.
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The constant P can be determined from the initial values
of the variables in Eq. (47). However, Eq. (48) is insufficient
to determine Q and R individually. To overcome this, a value
of aecrodynamic efficiency

n = lift/drag = PIR (49)

must be obtained or assumed. Armed with a value of 7, Eq.
(48) may be restated as

a, — g = Q — (Plmv? (50)

With P determined by the initial value of Eq. (47), Q may
be obtained from the initial values in Eq. (50). Armed with
these constants, we can now determine the trajectory for all
time.

The governing differential equations are

F = ve, (51)
v=0Q— (P2 +g, (52)
e, = —Pvk + g/v (53)
We also have
é, = @ X e, (54)

Now express w and g in component form as
W= Wi+ w,j+ wk (55)
g =&+ gJ+ gk (56)

We equate Eq. (53) to Eq. (54), and substitute the appropriate
components of Eqs. (55) and (56), to obtain

—w.k + wyj = —Pvk + (g5 + g:k)/v 57

which yields
w, = Pv — g/ (58)
w; = gyl (59)

Maintaining these values for w, and w, enforces the condition
of coordinated flight. However, the roll rate w, is still un-
specified.

In mode a, the roll rate is determined by the condition of
constant bank. Maintaining the angle between k and g, re-
quires that the ratio of the components of g, (g, and g;) remain
constant. This is expressed as

i(E) 55 @
From
g§=wXg (61)
we obtain
§2 = @8 — 0.8; (62)
£ = @18 — 0 (63)

Substituting Egs. (62) and (63) into Eq. (60) and solving for
the roll rate, we find

w8, t w383

2+ g (mode a) (64)

W, = g

In mode b, Eq. (64) is replaced by

w =0 (mode b) (65)
With the above equations for the rotational rates and accel-
erations, the position of the airplane and its velocity system
orientation are defined for all time. They can be computed
by numerical integration.

The selection of the mode used for determining the roll
rate, mode a or mode b, is based on the attitude. So long as
both pitch and bank stay within predetermined thresholds,
mode a is used. Should one of the thresholds be exceeded,
mode b is selected. Mode a stabilizes pull-ups and pushovers
into gentle climbing or descending spirals or straight flight
paths. This is representative of ordinary flying and transport-
type maneuvers. Mode b is suitable for acrobatic flying, and
will easily describe vertical and oblique loops. Mode a, if
maintained with the pitch attitude approaching the vertical,
results in rapid rolling. The rate of roll diverges as the pitch
attitude becomes 90 deg up or 90 deg down. However, long
before a condition like this is reached, we will have switched
to mode b.

It must be stressed that the procedure so far described
extrapolates wind orientation. It is still necessary to apply an
AOA correction. This is done as described in Sec. III. In the
case of the phugoid scheme, the use of a constant AOA cor-
rection is fully justified, since the AOA is kept constant.

The phugoid scheme requires an estimate of 7, the aero-
dynamic efficiency. The accuracy of this parameter is not
crucial. It determines the damping of the phugoid motion.
The frequency is independent of it. In the evaluation of Sec.
VIII we set it arbitrarily to 10.

VII. Exceptions
The equations presented above for extraction of the ori-
entation and for extrapolation of the trajectory are valid for
most flight conditions. However, there are a few discrete
conditions for which the equations fail. These conditions, and

. the methods that were employed to work around the singu-

larities they cause, are described in this section.

The procedure for extracting the orientation from the tra-
jectory {Sec. III) becomes undefined under two conditions:

1) The method aligns the x,, axis with the velocity vector.
This cannot be done when the aircraft translational velocity
is zero. For this case, we fall back on the method of constant
angular velocity, and determine the new orientation from the
previous orientation, based on the rotational rate and the
elapsed time.

2) The method also fails when the active normal specific
force I vanishes (flight at “‘zero g”). In this situation, the bank
cannot be determined. Instead, the aircraft is assumed to
achieve its new orientation by the smallest rotation that aligns
the x,, axis correctly.

This is a rotation about an axis that is perpendicular to both
the original x,, axis and the new x,, axis.

The phugoid scheme depends on resolving quantities such
as the acceleration of the airplane and the acceleration of
gravity into longitudinal and transverse components. This can-
not be done when the velocity vanishes. For this reason, when
the velocity is below a predetermined limit, we fall back to
either of the orientation extrapolation schemes described above
and to trajectory extrapolation using CEA.

Note that a traditional airplane cannot achieve zero speed
except momentarily at the point of a tail slide. At that point
the airplane undergoes a violent change of orientation. No
harm would result if the phugoid approximation adopted a
“do nothing” rule in the case of vanishing velocity, so long
as it is applied to an airplane. The reason for falling back on
the more traditional approach at extremely low speed is to
try to accommodate other vehicles, e.g., helicopters.
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VII. Evaluation

The algorithms of the previous sections were coded as C
subroutines and embedded in a program that exercised them
for evaluation against recorded flight histories.

Table 1 shows comparative figures of merit for different
methods of extrapolation. The table lists the number of up-
dates that were generated when the dead reckoning error
exceeded a position threshold of 10 ft or an orientation thresh-
old of 10 deg. Coordinate invariant thresholds are used. The
position threshold applies to the distance between the pre-
dicted position and the true position. The orientation thresh-
old applies to the angle of the short rotation between the
predicted orientation and true orientation. In this way the
history of updates is independent of the choice of coordinates
and of the heading on which a maneuver is started. Invariant
tolerances result in more updates than the same thresholds
values, applied to individual coordinates or to individual Euler
angles, as is done in Refs. 2 and 5.

The different extrapolation techniques are applied in Table
1 to the same flight history of an F-16. The flight sequence
was generated at Luke Air Force Base. It is illustrated in Fig.
4. (See Ref. 5 for additional analysis of the same data.) The
airplane maneuvered mainly in the vertical plane, going through
two consecutive loops. The history covers 35 s of flight. The
AOA was high throughout, exceeding 20 deg, which made
AOA correction very important. Both orientation extraction
and the phugoid performed very well.

Table 1 is arranged as a matrix. The columns contain results
obtained with different methods of orientation prediction with
the method of trajectory extrapolation remaining the same.
This is reversed with the rows. The phugoid method, which
cannot be mixed, results in a few entries of “NA.” Perfect
orientation (last row) and perfect trajectory (last column) are
included for comparison.

Inspection of Table 1 shows that the use of extraction with
correction (EC) for predicting orientation more than halved
the number of required updates as compared with constant
angular rates (CAR), the method of extrapolating the tra-
jectory being the same. What is more, the results employing
EC are very close to comparison data using the true orien-
tation. In other words, coupled with either CEA or CLTA,
EC is nearly perfect. The table shows only modest improve-
ment when CLTA is substituted for CEA, with the method
of predicting orientation remaining the same.

The pre-existing combination of CEA and CAR (CEA +
CAR) was doing well in requiring only 81 updates for the
1409 frame history. The all new combination of CLTA + EC
reduced this further to only 30 (a factor of 2.7). The phugoid

Table 1 Performance comparison using F-16 data

True
CEA CLTA Phugoid trajectory
CAR 81 78 NA 75
EC 36 30 NA 22
Phugoid NA NA 27 NA
True orientation 33 28 NA 0

Number of updates in 1409 frames to maintain a tolcrance of 10 ft and 10 deg.

scheme did even slightly better, requiring only 27 updates
(improvement by a factor of 3).

Table 2 offers data obtained with additional flight trajec-
tories. Only the extrapolation methods corresponding to the
diagonal positions in Table 1 are represented. Since the du-
ration of the various flight histories are not equal, the data is
stated in terms of updates per second. The F-16 data of Table
1 is included for comparison.

The histories include two sequences of X-31 maneuvering
flight generated at NASA Dryden; a UH-1 helicopter in trans-
lational flight flown by an Army aviator at the University of
Alabama Flight Dynamics Lab; and an F-16 wingman flying
formation with the first F-16 generated from the original F-
16 data. The wingman was postulated to maintain a rigid side-
by-side formation with his wingtip separated laterally from
the leader’s wingtip by 10 ft.

The X-31 data was taken with thrust vectoring disabled.
Thrust vectoring would severely violate the assumptions made
in deriving the new extrapolation methods. Even so, we dis-
tinguish one sequence that was uncoordinated to the extent
of almost 0.5 g of lateral load from another that was basically
coordinated with side loads limited to less than 0.1 g. The
wingman and the helicopter are also uncoordinated. The
wingman is forced to deviate from coordinated flight to main-
tain the rigid formation. The helicopter deviates from airplane
style coordinated flight because of the side force generated
by its tail rotor.

All cases show gains for the airplane specific methods. Sur-
prisingly, there are gains, albeit more modest, even for the
histories where the assumption of coordinated flight is not
strictly satisfied. An exhaustive study of the relative merit of
the new methods for all aircraft and all flight regimes is outside
the scope of this article. However, Table 2 serves to illustrate
that significant gains are not exceptional.

Even though developed with distributed simulation in mind,
the methods presented here may be of value in other appli-
cations. Ground-to-air and air-to-air weaponry could be one
instance.

The approach of exploiting knowledge specific to the cat-
egory of vehicle could be extended to helicopters, ground

Trajectory

/f\ ------- Ground Track
wemm— o X,Z projection

[

Fig. 4 F-16 flight trajectory.

Table 2 Additional performance comparisons

Improvement
CEA + CAR CLTA + EC Phugoid factor
F-16 2.23 0.85 0.77 3.0
F-16 wingman 3.24 1.90 1.96 1.7
X-31 1.63 0.43 0.33 49
X-31 uncoordinated 1.13 0.86 0.76 1.5
UH-1 0.780 0.427 0.416 1.9

Number of updatcs per seccond to maintain a tolerance of 10 ft and 10 deg.
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vehicles, supersonic aircraft and missiles, and ballistic mis-
siles.
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